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We discuss how a system of particles with bounded interaction potentials responds to increased densities. In
particular we elaborate the ability of a system to form potential barriers between the particles, to allow a so
called cluster formation. These theoretical considerations are complemented by computer simulations that
allow us to observe the onset of clustering at low particle densities. We discuss the simulation results with
regard to the presence of potential barriers and establish a formulation to explain the effect of potential barriers
by the use of the Fourier transform of the potential function.
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I. INTRODUCTION

Within the field of computational physics, systems are
usually described by the pair potential of their constituent
particles. Under certain conditions, for example when study-
ing specific macromolecules in a solvent, the pair potential
can be approximated by a function which is bounded at its
origin �e.g., �1��. This implies that the centers of mass of
such macromolecular aggregates can—in contrast to conven-
tional particles �e.g., Argon �2��—fully overlap.

The importance of systems with bounded interaction po-
tentials, especially the Gaussian core model �GCM� �1,3–7�,
has become evident within the last years as theoretical and
experimental studies have been performed �8,9�. It has been
shown that different dendrimers �10,11� and polymer chains
�12� can be very well approximated by such effective inter-
action potentials.

When increasing the density within a system of particles
with bounded pair potential they can behave in two different
ways. Depending on the pair potential they show either re-
entrant melting behavior or their particles arrange themselves
in clusters. Within this context clusters are an aggregation of
overlapping particles, which can form crystalline systems.

The effect of clustering takes place because the solid al-
ways lowers its free energy by allowing multiple occupied
crystal sites. This effect was first discovered when simulating
the penetrable spheres model �PSM� �13�. On the other hand,
the GCM model shows fluid and solid phases as well as
reentrant melting �8�.

In order to explain the different mechanisms of soft matter
systems at high densities, considerable effort has been put
into experimental and theoretical studies. Within �14�
Mladek et al. introduced the generalized exponential model
with index n �GEM-n�, which is defined as v�r�=�e−�r/��n

.
This model becomes the GCM with n=2 and approaches the
PSM for n→�, thus it is a model that allows us to observe
the phase behavior of the system when the steepness of the
potential is tuned.

Likos et al. �15� derived a criterion to determine whether
a system shows reentrant melting or clustering, by employ-
ing a mean-field–density-functional theory. Within their
work they distinguish between Q+ and Q± classes of poten-
tials. The Fourier transform of Q+ potentials contains only
positive values, while the Fourier transform of Q± potentials

contains positive and negative values. The criterion found by
Likos et al. states that Q+ potentials show reentrant melting
behavior, while Q± potentials will freeze at all temperatures
in a clustered formation at high densities �15�.

At first glance the formation of clusters seems to be coun-
terintuitive, especially for systems with purely repulsive pair
potentials, as one would expect attractive forces to be needed
to keep the particles concentrated in a cluster.

Although purely repulsive potentials lack an attractive
force, they are able to build an overall potential field within
a system that provides less repulsion at a particle position
than at a free space. In this case an attractive force is merely
provided by the lack of repulsion.

Within our paper we try to explain the mechanisms of
clustering by two different approaches: First we observe the
pair potential and the resulting potential distribution in a
solid formation with regularly spaced particles. We will for-
mulate a necessary criterion for generic pair potentials to
build up “quasiattractive” potentials. These considerations
are explained in detail in Sec. II.

On the other hand, the formation of clusters is not only
determined by the potential energy but rather a result of the
interplay between the system’s potential energy and its en-
tropy. Therefore the observation of the potential is important
to qualitatively understand the mechanisms better, but it is
not sufficient to quantitatively determine the structures a sys-
tem will form. Therefore other methods have to be used. In
this paper we document simulations of a system with a
purely repulsive pair potential that give also insight into the
mechanics of clustering.

Some of these simulations will directly show that the
simulated system has a potential distribution according to the
considerations presented in Sec. II, while other simulation
results can be well explained by the theory. The simulations
and their results are described in Sec. III.

A short conclusion is given in Sec. IV.

II. THEORY OF POTENTIAL BARRIERS

Within this section we consider systems with bounded
potentials as a solid formation and observe the resulting po-
tential of all particles. These summed potentials strongly in-
fluence the behavior of additional particles entering the sys-
tem.
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Within Fig. 1 pair potentials of the GEM-n system with
index n=4 are drawn. This system was recently discussed
and simulated �14,16�. The particles are placed at x= �2m
+1�a within a one dimensional system �m is any integer
value�, thus the distance between two neighbor particles is
2a. Unless otherwise noted, all physical quantities in the fig-
ures of this paper are drawn in reduced units which is indi-
cated by the superscripted asterisk, as defined in �17�.

The dashed lines show the contributions of each indi-
vidual particle, while the solid line shows the summation of
all particles. It can be clearly seen that the summed potential
has a higher value between the particles than at the positions
where particles are placed.

An additional particle brought into the system will there-
fore observe a lower potential if it places itself onto another
particle than in the case that it resides between the particles.
In case the kinetic energy of this particle is low compared to
the potential barrier, it will most likely move to the next
minimum and stay there trapped.

Of course the particle could also stay at the top of a po-
tential barrier; the probability to find the particle at a certain
place within the system is defined by the Boltzmann distri-
bution. That means the probability is not only dependent on
the height of the potential barrier but also on the width of it
compared to the width of the minimum, i.e., its geometric
layout.

A potential distribution with very few or narrow minima
will lead to an increased probability to find the additional
particle away from the minimum. In other words, the fewer
places with a potential minimum are available in a system
the higher will be the entropy of the system with trapped
�i.e., clustered� particles.

This is an important fact as it shows how the free energy
is included in our model. Actual results of the interplay be-
tween the entropy and the potential energy are documented
in Sec. III.

The height and even the occurrence of such a potential
barrier is dependent on the distance 2a, which is inversely
proportional to the particle density of the system. We there-
fore expect the following behavior within a GEM-4 system:

Starting from a solid with a very low density we increase the
density until potential barriers build up. When the density is
further increased the barriers become high enough to allow
clustering if any further particles are placed into the system.

Such a potential barrier cannot be generated with just any
kind of pair potential. If we would, for example, try the same
experiment with a potential function v�r�=�e−�r/�� we would
observe no higher potential than the one at the particle posi-
tions, no matter how we choose the distance a.

From these considerations we can intuitively conclude
that only particles with a pair potential that makes potential
barriers as illustrated in Fig. 1 possible can show clustering
at high densities, while systems missing this potential barrier
will fail to form a stable cluster formation.

As we are interested to find an answer to the question of
whether a specific system can build up a potential barrier, we
would have to check this for any distance 2a. As this is a
nontrivial task, we are looking for an analytical expression
that can quickly give the answer to this question. An expres-
sion using the frequency domain representation of the effec-
tive pair potential also allows us to compare the result with
the criterion derived by Likos et al. �15�.

Within the following discussion we suppose an even, real-
valued Fourier transformable potential function v�x�. To find
out whether the sum of the potentials is higher in between
the particles �x=0� or at the position of the particle �x=a� we
calculate the difference

V�a� − V�0� = ¯ + v�− 2a� − v�− a� + v�0� − v�a� + ¯ ;

�1�

using the Kronecker � �19� this summation can be rewritten
as

V�a� − V�0� = �
l=−�

�

v�la�cos��l� = �
−�

�

v�x� �
l=−�

�

��x

− la�cos��

a
x�dx . �2�

As we required v�x� to be an even and real function its Fou-
rier transform will also be even and real. Let us call v̂�Q�
=	2�F�v�x�� where F� � denotes the Fourier transform.
Equation �2� is then identical to

V�a� − V�0� =
1

a
�

l=−�

�

v̂��

a
+ l

2�

a
� �3�

because the multiplication with the sum of Kronecker func-
tions within Eq. �2� is a discretization within the spatial do-
main and corresponds to the periodic repetition of its Fourier
transform as expressed in Eq. �3�.

It is obvious that the difference �3� will always be positive
for Q+ potentials, i.e., no distance 2a can be found at which
the potential between two particles is higher than at the par-
ticle position itself. Only Q± potentials can build up a barrier
as depicted in Fig. 1 for certain values of a.

We can also learn something about the possible values of
a from the following considerations: As the spectral band-
width of conventional pair potentials is practically limited
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FIG. 1. �Color online�The pair potential of two particles and the
summed pair potential of all particles. The particles are located with
a distance of 2a*=1.5 to each other, which is a cluster distance
observed in previous simulations �14,16�.
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we can define a value Q0 in a way that Q · v̂�Q�=0 holds true
with adequate accuracy for Q�Q0 �20�. Therefore we derive
a lower limit for a from Eq. �3�:

a �
�

Q0
. �4�

On the other hand, we can obviously do the same in the
spatial domain to obtain an upper limit for a. If v�x�=0 holds
true for x�x0 we derive

a � x0 �5�

as an upper limit for a. Following the notation of Likos et al.
�15� we call Q* the value of Q at which v̂�Q� attains its
minimum, thereby yielding a negative value.

The result of the summation �3� will generally be domi-
nated by the expression 1/a · v̂�� /a�, the minimum of this
expression refers to the maximal height of the potential bar-
rier and will generally be reached at a particle spacing that is
close to 2a=2� /Q*, which is the particle spacing at which a
Q± system will freeze according to �15�.

These considerations can also be applied to systems of
higher dimensionality, in particular to a three dimensional
system. Let us assume that the particles are placed at x
= �2j+1�a, y= �2k+1�a, and z= �2l+1�a with the integers
j ,k , l. Within Eq. �6� the term V�a� again refers to the poten-
tial which can be observed at a particle position �e.g.,
�a 0 0��, and V�0� is the potential at the point symmetrically
placed between the particles at �0 0 0�. Equations �2� and �3�
can then be rewritten as

V�a� − V�0� =� v�x���
j,k,l

��x� − aj��cos��

a
e� · x��dx�

=
1

a3 �
j,k,l

v̂��

a
e� +

2�

a
j�� . �6�

with

j� = 
 j

k

l
� e� = 
1

1

1
� . �7�

We obtain the same result within the three dimensional sys-
tem as in the one dimensional: Q+ potentials will always
require the difference �6� to be positive and thus they will not
be able to form a stable clustered configuration.

The argument presented here only takes into account the
internal energy U, whereas at finite temperatures it is rather
the free energy F=U−TS that matters. Whereas energy fa-
vors cluster formation, entropy plays a dual role. On the one
hand, a cluster consisting of nc particles entails an entropic
cost of kB ln�nc�, thus clusters are disfavored. On the other
hand, cluster formation opens up new free space, so that the
free volume entropy increases and cluster formation is fa-
vored anew �14�. The simulation results presented in Sec. III
demonstrate that cluster formation does indeed bring about
an overall free energy gain, a fact that has also been con-
firmed by analytical calculations based on density-functional
considerations �18�.

III. SIMULATION RESULTS

To obtain better insight into the mechanisms of clustering
we carried out a large number of simulations within the
GEM-4 system. These simulations were performed on a high
performance reconfigurable computing platform, on which
we implemented a lattice Monte Carlo algorithm.

For this purpose the configuration space was discretized
to allow the pair potential values to be tabulated. The result-
ing lookup tables were copied into a so-called “field pro-
grammable gate array” �FPGA�, where their content was
read out in a parallelized fashion to allow considerable
speedup for the calculation of the total potential. We chose
the discretization in a way that its effect became negligible
compared to other sources of error, which we verified experi-
mentally and analytically �16�. All simulations were per-
formed in the NVT ensemble with a varying number of par-
ticles to keep the size c of the simulation cube constant.

To set up simulations that support the theory presented in
Section II, we had to evaluate first the phase diagram in a
wide density range. Using the phase diagram we were then
able to set up a system exactly at the onset of clustering,
which is described later in this section. We determined the
phase diagram by simulated annealing and melting simula-
tions. This would be a relatively straightforward task within
a system that does not build clusters, but is somehow more
complicated when the number of particles is not known that
will form a cluster.

To allow a fluid to crystallize it is necessary to simulate
the correct number of particles in the system, which build up
the correct number of clusters to form either a bcc or fcc
lattice. Therefore we chose an iterative approach, where we
set up a system at a high density �	*=9� and temperature
T*=2 and cooled it slowly down until a solid state was
reached. The cluster density 	c

*=0.48 �the number of clusters
within the volume unit� of this solid was taken as a starting
value for the following iterations at lower densities: �i� Set
up a system to obtain 108 clusters �this would allow an fcc
crystal for the clusters� with a given 	c

* at a temperature
where it is in a fluid phase. �ii� Slowly cool down the system
until it reaches a solid state. �iii� If 108 clusters in fcc con-
figuration are met the iteration has finished. Otherwise cal-
culate the obtained 	c

* and start over at point 1.
The same procedure was performed to allow a bcc crys-

tallization �128 clusters�. The fcc iterations converged only at
one density after two iterations, at all other densities the
iterations did not converge at all. The result of the annealing
process were disordered, glasslike configurations of clusters.

The bcc iterations converged at six different densities af-
ter the first, at four different densities after the second, and at
three different densities at the third iteration.

Although it cannot be definitely said which of the crystal
configurations �bcc/fcc� is the “natural” choice of the system
at the fluid to solid transition, as the free energy was not
calculated within the simulations, these simulations give evi-
dence that the system prefers a bcc configuration when build-
ing up clusters.

The results of these simulations are summarized in Fig. 2;
the dashed line in this figure is the function for a system that
shows no clustering �i.e., the particle density is always equal
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to the cluster density�. It seems that the system “tries to
avoid” clustering as long as possible by lowering the particle
spacing. But starting at 	*=0.55 more and more particles
find their place “on top of other” particles.

This behavior can be explained by the fact that the poten-
tial barriers need a certain distance between the particles to
build up. As long as the distance between two particles is too
low to build up sufficiently large potential barriers, the par-
ticles do not form clusters. When the system reaches a cer-
tain density, where each particle is surrounded by a potential
barrier, the clustering sets in.

At 	*=1.0 we found all clusters occupied with two par-
ticles in the system �i.e., 	c

* increases to 0.5�. Again the sys-
tem avoids as long as possible to build three particle clusters
by lowering the particle spacing. For densities 	*
1 the
cluster density remained at 	c

*=0.48. This corresponds to a
widely constant lattice spacing for all densities where clus-
tering can be observed, with a slightly smaller lattice spacing
at lower densities where clustering sets in. As potential bar-
riers can only be built up at certain lattice spacings the con-
stant cluster density is a prerequisite to form clusters at all
densities. The effect of constant lattice spacing was already
predicted in �15�.

After determining the function 	c
*�	*� it was straightfor-

ward to obtain the phase transition temperature as a function
of the density. We set up the system at different densities
ranging from 	*=0.3 to 	*=7 with a number of particles that
allows the system to crystallize in the appropriate formation.
The system was then slowly cooled down from the fluid state
until a solid formation was reached.

To verify whether the cooling rate was low enough, we
also performed simulated melting. For this purpose we set up
crystalline systems with the expected values of 	* and 	c

* and
heated them up with the same rate as the simulated annealing
was performed. The melting and the annealing temperatures
were found to match with only small deviations. Thus the
cooling and heating rates are considered to be low enough
for accurate results.

The result of these simulations is drawn in Figs. 3 and 4.
The curves agree very well with the results from Mladek et
al. �14�, who obtained the phase diagram by use of a density

functional theory for high densities. For densities 	*
1 we
can see that the phase transition temperature increases lin-
early with the density. In Fig. 4 we can observe that the
clustering, which sets in at a low density of 	*=0.55, reduces
the melting temperature by a certain value.

In our case the phase transition was determined by ob-
serving the potential of the system while varying the tem-
perature. Such a curve can be found in Fig. 5 for a density
where no clustering takes place. The step at the phase tran-
sition can be clearly seen.

In Fig. 6 the system was set up at a density where clus-
tering takes place, the step at the phase transition is softened
in the solid and the fluid phase within the system. The soft-
ening within the fluid phase is probably due to the building
of temporary clusters in the fluid, as they are described in
�18�.

The softening in the solid phase is related to the higher
mobility of the particles in and between clusters at higher
temperatures. Some of the particles are acting like a fluid
within the solid.

At low temperatures the particles rested on each other,
resulting in a small expansion of the cluster. At higher tem-
peratures, we observed that the individual particles became
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FIG. 2. �Color online� The cluster density of a GEM-4 system
dependent on the particle density, obtained by iterative simulated
annealing simulations. The dashed line shows the function 	c
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FIG. 3. �Color online� The phase diagram of the GEM-4 system,
as derived by simulations within an NVT ensemble �redrawn from
Ref. �16��. The phase transition points were obtained by simulated
annealing ��� and simulated melting �+�.
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more and more mobile within and between the clusters, i.e.,
the geometric cluster dimension increased whereas the crys-
talline arrangement of them was preserved.

This behavior can be explained if we assume a potential
function with a minimum at the center of a cluster �as de-
picted in Fig. 1 for a two particle cluster�. At low tempera-
tures all particles try to rest close to the minimum of the
potential function. At high temperatures the particles can also
reach positions with higher potential energy.

When the step at T*=0.65 was reached, the crystalline
formation was destroyed and the system changed into the
fluid state. When a system in such a fluid state is cooled
down very quickly, it also forms clusters but they are in
general not arranged in a regular lattice. Unregular solid for-
mations of clusters were observed; an example is shown in
Fig. 7.

Such glasslike formations have a stability against remelt-
ing �i.e., the number and position of the clusters are un-
changed� up to a temperature that is slightly lower than for
the crystalline formation. They also show cluster expansion

at higher temperatures and the intercluster “tunneling” effect
as described in more detail later on. This behavior was veri-
fied during simulated melting with very low heating rates of
up to one million passes per temperature increment.

The potential barriers can be formed at different interpar-
ticle distances, as discussed in Sec. II. Glasslike configura-
tions are therefore not contradictory to the theory of potential
barriers, as long as the clusters maintain certain restrictions
on minimum and maximum distance to each other. The simu-
lation results show that also the glasslike configurations pro-
vide a constant cluster density, thus the average distance be-
tween the clusters is in the same order as in crystalline
systems indicating that the minimum and maximum restric-
tions can be met.

To give our assumptions from section II experimental evi-
dence, we set up a system at a density where clustering sets
on. We chose a bcc lattice configuration, where every lattice
site was occupied by one particle and put one additional
particle between the lattice positions. The temperature of the
system was chosen to be low to minimize the noise on the
trajectories of the additional particle. The movement of this
additional particle can be seen in Fig. 8. Within a few simu-
lation passes the particle moves onto one of the nearest par-
ticles. We observed that the lattice structure remained un-
changed. All positions are now occupied with one particle
except one lattice site which hosts two particles. The energy
that this additional particle observes during these simulation
steps can be seen in Fig. 9. Clearly the energy drops when
the double occupation of the lattice position is reached.

The increased potential energy of the particle while it is
located between the regularly spaced particles indicates
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FIG. 5. �Color online� The mean energies of a system at 	*
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takes place. During the simulations the temperature was slowly
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FIG. 7. �Color online� A system in a fluid state at 	*=4 was
cooled down very quickly to T*=0.1. The clusters are not located
on a regular lattice, nevertheless, they maintained a fixed relative
position to each other during the whole simulation time of
1 000 000 passes. Particle diameters are not drawn to scale but are
chosen to optimize visibilty of the structure.
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clearly the existence of a potential barrier. The straight
movement of the particle onto the next neighbor is an indi-
cator that the repulsive force from the potential barrier is
responsible for the clustering. With this experiment we also
proved that the assumption of a static lattice is valid when
the system is set up at the density where clustering takes
place.

In another experiment we chose the same setup at a higher
temperature and observed the movement of the additional
particle over a longer time. After an arbitrary number of
simulation passes the particle moves to another lattice site.
This behavior can be seen in Fig. 10.

This sudden movement to other lattice sites often involves
more than just one particle. The tunneling results in a chain

reaction where the particle of the target lattice site is knocked
out of its position and has to look for a new place. It was
experimentally verified that at higher temperatures the par-
ticles are changing the lattice site more frequently. The inter-
cluster tunneling is not limited to low densities and was also
observed at high densities in ordered and disordered solid
phases.

Potential barriers require particles with a high kinetic en-
ergy to move from one cluster to another. Such particles are
more often present in systems with a higher temperature.
Thus the increased frequency of cluster tunneling at higher
temperatures can be well explained with the theory of poten-
tial barriers.

IV. CONCLUSIONS

We considered systems made of particles that interact by
means of a pair potential that is bounded. We defined the
system to be in a solid state and observed the sum of the
potential functions of all constituent particles.

We presented results of simulations demonstrating the
clustering effect at low densities, by observing trajectories of
individual particles and the crystalline structure of the sys-
tem. We formulated the ability of the system to build poten-
tial barriers between particles by an equation using the spec-
tral representation of the pair potential. The results we
obtained are in line with the results from Likos et al. �15�
and provide an alternative, simplified, and intuitive view on
the effect of clustering.

The equations derived herein are not limited in their va-
lidity to potential functions that are purely repulsive. The
only restrictions to the potential function are that it is even,
real, and Fourier transformable.
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